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Q1. (20 pts) Fill in the blanks 
 
a) (4 pts) 0xAFEC3A15 + 0xB5182C90  equals to  0x650466A5    in hexadecimal.  

The addition produces a CARRY / NO CARRY (circle one) and it produces 

OVERFLOW / NO OVERFLOW (circle one). Show addition for full mark. 

 

 

 

 

 

 

b) (4 pts) 0xAFEC3A15 - 0xB5182C90  equals to   0xFAD40D85  in hexadecimal. The 

subtraction produces a BORROW / NO BORROW (circle one) and it produces 

OVERFLOW / NO OVERFLOW (circle one). Show subtraction for full mark. 

 

 

 

 

 

 

c) (2 pts) Assume that you are in a company that will market a certain IC chip. The cost per 

wafer is $5000, and each wafer has 2000 dies. If the cost of a good die is $4, then the 

yield of this manufacturing process is _($5000/$4) / 2000 = 0.625 = 62.5%_.  

 

 
 
 
 

d) (2 pts) The smallest 32-bit negative number that can be represented using 2’s complement 

representation in hexadecimal is 0x80000000  and the largest positive number in 

hexadecimal is 0x7FFFFFFF  . 
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e) (2 pts) Assume that the instruction j NEXT  is at address 0x00401030 , and the label 

NEXT is at address 0x00400A18 . Then, the 26-bit immediate stored in the jump 

instruction for the label NEXT is 0x00400A18 >> 2 = 0x100286 . 

 
 
 
 
 
 
 
 
 
f) (2 pts) Assume that the instruction  beq $t0,$t1,NEXT  is at address 0x00401030 , 

and the label NEXT is at address 0x00402A18 . Then, the 16-bit immediate stored in the 

branch instruction is (0x00402A18-0x00401034)>>2 = 0x0679.  

 
 
 
 
 
 
 
 
 
 
g) (4 pts) Given the following data definitions, the address of the first variable X is given at 

0x10010000  (hexadecimal), Construct a symbol table showing the symbols X, Y, Z, S 

and their corresponding addresses in hexadecimal. 

.data  
X: .byte   'A', 'B', 'C' 
Y: .half   1, -2, 100  
Z: .word   7, 8, 0x123 
S: .asciiz  "STRING"  

 
 
 
 
 
 
 
 
 
 
 
  

 Symbol Address 
 

X 0x10010000 
Y 0x10010004 
Z 0x1001000C 
S 0x10010018 
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Q2. (15 pts) Integer Multiplication 
  

a) (10 pts) Show the binary multiplication of the following two 16-bit unsigned integers. The 
product should be a 32-bit unsigned integer. 

 
 

  1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 
× 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 

 
              1     1 1 1 1 1 1   1     1 
                              1 0 1 1 0 0 1 0 0 0 0  0 1 0 0 1 0 
                      1 0 1 1 0 0 1 0 0 0 0 0 1 0 0  1 
            1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 
    1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 
 
 
0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0  1 1 0 0 1 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) (5 pts) To implement a 16-bit tree multiplier in hardware, how many AND gates are used? 

How many carry-save adders are needed? How many carry-propagate adders are needed? 
Explain your answer. 

 
 Number of AND gates = 16 × 16 = 256 
 
 The 16-bit tree multiplier has 16 intermediate product results 
 

Total number of adders  = 15 
 
 Number of Carry-Save adders = 14 
 
 Number of Carry-Propagate adders = 1 
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Q3. (10 pts) Floating-Point Number Representation 

 
a) (5 pts) Given that x is a single-precision IEEE 754 floating-point number: 

x = 1 10000101 100 1010 0001 1010 0000 0011 2   
 

What is the decimal value of x? 
 

Sign bit = 1 (negative) 
 
Biased Exponent = 10000101 = 133 
 
Exponent Value = 133 – 127 = +6 
 
Value = - (1.10010100001101000000011) 2 × 2 6 
      = - (1100101.00001101000000011) 2 
 
Decimal Value = - 101.0508 
 

 
 
 
 
b) (5 pts) Convert -6.25  from decimal to the IEEE 754 single-precision floating point 

format. Show all your work for each step in the solution. 
 
 

0.25 × 2 = 0.5 
0.50 × 2 = 1.0 
 
6.25 (decimal) = 110.01 (binary) 
 
Normalize: 
 
110.01 (binary) = 1.1001 × 2 2 
 
Biased Exponent = 2 + 127 = 129 = 10000001 (binary)  
 
IEEE 754 Single-Precision Representation: 
 
1 10000001 100 1000 0000 0000 0000 0000 
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Q4. (15 pts) Tracing the Execution of Assembly Language Code 

a) (7 pts) Given that Array  is defined as shown below, determine the content of register 
$v0  and $v1  after executing the following code. Show your steps. 

   
Array: .word 15, -19, 17, 20, -10, 12, 100, -5 

 
   la   $a0, Array # $a0 = 0x10010000 
   addi $a1, $a0, 28 

  move $v0, $a0  
  lw $v1, 0($v0)  
  move $t0, $a0  
loop: addi $t0, $t0, 4  
  lw $t1, 0($t0)  
  bge $t1, $v1, skip  
  move $v0, $t0  
  move $v1, $t1 
skip: bne $t0, $a1, loop  

    
 
 

$v0 = 0x10010004 (address of minimum element) 
 
$v1 = -19 (minimum value) 

 

b) (8 pts) Given that Array  is defined as shown below, determine the content of Array  
after executing the following code. Show your steps. 

 

Array: .half 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12  
   

 la   $a0, Array 
 li   $a1, 6 
 move $t0, $a0 
 addi $t1, $a0, 12 
 

loop: lh   $t3, ($t0) 
 lh   $t4, ($t1) 
 sh   $t3, ($t1) 
 sh   $t4, ($t0) 
 addi $t0, $t0, 2 
 addi $t1, $t1, 2 
 addi $a1, $a1, -1 
 bne  $a1, $zero, loop 

 
      

New Array Content: 
 
 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6 
 
 (swapping the first six elements with the last six )  
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Q5. (25 pts) Writing Assembly Language Functions 

a) (12 pts) Write a MIPS function named count1s  to count the number of 1's in register 
$a0  and put the result in register $v0 . For example, if $a0 = 0xffff0000  then the 
number of 1's will be $v0 = 16 . 

 
 

count1s: 

li   $v0, 0 # initialize $v0 = 0 

loop: andi $t0, $a0, 1 # $t1 = bit 0 of $a0 

 add  $v0, $v0, $t0 # $v0 = count bit in $t0 

 srl  $a0, $a0, 1  

 bne  $a0, $zero, loop # loop until ($a0 == 0) 

 jr   $ra # return to caller  

 
 
 
 
b) (13 pts) Write a function gcd  to compute the greatest common divisor of two unsigned 

integers as follows: 
gcd(a,0) = a 

gcd(a,b) = gcd(b,a%b) // a%b is the remainder of di vision 

For example: gcd(8,12)=gcd(12,8)=gcd(8,4)=gcd(4,0)=4 . 

The arguments are passed in registers $a0  and $a1  and the result is returned in $v0 . 

 
gcd: 

bne  $a1, $0, else # branch if (b != 0) else 

move $v0, $a0 # $v0 = a 

jr   $ra # return to caller 

else: divu $a0, $a1 # divide a by b 

 move $a0, $a1 # $a0 = b 

 mfhi $a1 # $a1 = remainder a%b 

 j    gcd # jump to gcd  
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 Q6. (20 pts) Translating a Function into MIPS Assembly Language 
 

The function BinarySearch  searches an array of integers for a given item. Each 
element in the array is a 4-byte signed integer. The procedure receives three parameters: 
$a0  = address of the array to be searched, $a1  = number n of elements in the array, 
and $a2  = item  to be searched for. If item  is found then BinarySearch  returns the 
index of item  in register $v0 . Otherwise, $v0 = -1 . Translate this function into 
MIPS assembly language and insert comments to explain the use of registers. 

 
 int BinarySearch (int array[], int n, int item) { 
  int lower = 0; 
  int upper = n-1; 
  while (lower <= upper) { 
    middle = (lower + upper)/2; 
    if (item == array[middle]) 
      return middle; 
    else if (item < array[middle]) 
      upper = middle–1; 
    else 
      lower = middle+1; 
  } 
  return -1; 

 } 
 
Solution: 

BinarySearch: 

 li $t0, 0 # $t0 = lower index 

 addiu $t1, $a1, -1 # $t1 = upper index 

while: 

 bgt $t0, $t1, ret # branch if (lower>upper) 

 addu $v0, $t0, $t1 # $v0 = lower+upper 

 srl $v0, $v0, 1 # $v0 = middle index = $v0/2 

 sll $t2, $v0, 2 # $t2 = middle*4 

 addu $t2, $a0, $t2 # $t2 = address array[middle] 

 lw $t3, 0($t2) # $t3 = value array[middle] 

 bne $a2, $t3, else1 # (item == array[middle])? 

 jr $ra # return 

else1: 

 bgt $a2, $t3, else2 # (item < array[middle])? 

 addiu $t1, $v0, -1 # upper = middle-1 

 j while 

else2: 

 addiu $t0, $v0, 1 # lower = middle+1 

 j while 

ret: 

 li $v0, -1 # $v0 = -1 

 jr $ra # return 
 


