
Prepared by Dr. Muhamed Mudawar

COE 301 – Computer Organization

Midterm Exam – Spring 2015

Wednesday, April 1, 2015

6:30 – 8:30 pm

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Q1 / 20 Q2 / 15

Q3 / 10 Q4 / 15

Q5 / 25 Q6 / 20

Total / 105

Important Reminder on Academic Honesty
Using unauthorized information or notes on an exam, peeking at others work, or
altering graded exams to claim more credit are severe violations of academic
honesty. Detected cases will receive a failing grade in the course.

 Page 2 of 8

Q1. (20 pts) Fill in the blanks

a) (4 pts) 0xAFEC3A15 + 0xB5182C90 equals to 0x650466A5 in hexadecimal.

The addition produces a CARRY / NO CARRY (circle one) and it produces

OVERFLOW / NO OVERFLOW (circle one). Show addition for full mark.

b) (4 pts) 0xAFEC3A15 - 0xB5182C90 equals to 0xFAD40D85 in hexadecimal. The

subtraction produces a BORROW / NO BORROW (circle one) and it produces

OVERFLOW / NO OVERFLOW (circle one). Show subtraction for full mark.

c) (2 pts) Assume that you are in a company that will market a certain IC chip. The cost per

wafer is $5000, and each wafer has 2000 dies. If the cost of a good die is $4, then the

yield of this manufacturing process is _($5000/$4) / 2000 = 0.625 = 62.5%_.

d) (2 pts) The smallest 32-bit negative number that can be represented using 2’s complement

representation in hexadecimal is 0x80000000 and the largest positive number in

hexadecimal is 0x7FFFFFFF .

 Page 3 of 8

e) (2 pts) Assume that the instruction j NEXT is at address 0x00401030 , and the label

NEXT is at address 0x00400A18 . Then, the 26-bit immediate stored in the jump

instruction for the label NEXT is 0x00400A18 >> 2 = 0x100286 .

f) (2 pts) Assume that the instruction beq $t0,$t1,NEXT is at address 0x00401030 ,

and the label NEXT is at address 0x00402A18 . Then, the 16-bit immediate stored in the

branch instruction is (0x00402A18-0x00401034)>>2 = 0x0679.

g) (4 pts) Given the following data definitions, the address of the first variable X is given at

0x10010000 (hexadecimal), Construct a symbol table showing the symbols X, Y, Z, S

and their corresponding addresses in hexadecimal.

.data
X: .byte 'A', 'B', 'C'
Y: .half 1, -2, 100
Z: .word 7, 8, 0x123
S: .asciiz "STRING"

 Symbol Address

X 0x10010000
Y 0x10010004
Z 0x1001000C
S 0x10010018

 Page 4 of 8

Q2. (15 pts) Integer Multiplication

a) (10 pts) Show the binary multiplication of the following two 16-bit unsigned integers. The
product should be a 32-bit unsigned integer.

 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
× 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0

 1 1 1 1 1 1 1 1 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1

0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0

b) (5 pts) To implement a 16-bit tree multiplier in hardware, how many AND gates are used?

How many carry-save adders are needed? How many carry-propagate adders are needed?
Explain your answer.

 Number of AND gates = 16 × 16 = 256

 The 16-bit tree multiplier has 16 intermediate product results

Total number of adders = 15

 Number of Carry-Save adders = 14

 Number of Carry-Propagate adders = 1

 Page 5 of 8

Q3. (10 pts) Floating-Point Number Representation

a) (5 pts) Given that x is a single-precision IEEE 754 floating-point number:

x = 1 10000101 100 1010 0001 1010 0000 0011 2

What is the decimal value of x?

Sign bit = 1 (negative)

Biased Exponent = 10000101 = 133

Exponent Value = 133 – 127 = +6

Value = - (1.10010100001101000000011) 2 × 2 6
 = - (1100101.00001101000000011) 2

Decimal Value = - 101.0508

b) (5 pts) Convert -6.25 from decimal to the IEEE 754 single-precision floating point

format. Show all your work for each step in the solution.

0.25 × 2 = 0.5
0.50 × 2 = 1.0

6.25 (decimal) = 110.01 (binary)

Normalize:

110.01 (binary) = 1.1001 × 2 2

Biased Exponent = 2 + 127 = 129 = 10000001 (binary)

IEEE 754 Single-Precision Representation:

1 10000001 100 1000 0000 0000 0000 0000

 Page 6 of 8

Q4. (15 pts) Tracing the Execution of Assembly Language Code

a) (7 pts) Given that Array is defined as shown below, determine the content of register
$v0 and $v1 after executing the following code. Show your steps.

Array: .word 15, -19, 17, 20, -10, 12, 100, -5

 la $a0, Array # $a0 = 0x10010000
 addi $a1, $a0, 28

 move $v0, $a0
 lw $v1, 0($v0)
 move $t0, $a0
loop: addi $t0, $t0, 4
 lw $t1, 0($t0)
 bge $t1, $v1, skip
 move $v0, $t0
 move $v1, $t1
skip: bne $t0, $a1, loop

$v0 = 0x10010004 (address of minimum element)

$v1 = -19 (minimum value)

b) (8 pts) Given that Array is defined as shown below, determine the content of Array
after executing the following code. Show your steps.

Array: .half 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

 la $a0, Array
 li $a1, 6
 move $t0, $a0
 addi $t1, $a0, 12

loop: lh $t3, ($t0)
 lh $t4, ($t1)
 sh $t3, ($t1)
 sh $t4, ($t0)
 addi $t0, $t0, 2
 addi $t1, $t1, 2
 addi $a1, $a1, -1
 bne $a1, $zero, loop

New Array Content:

 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6

 (swapping the first six elements with the last six)

 Page 7 of 8

Q5. (25 pts) Writing Assembly Language Functions

a) (12 pts) Write a MIPS function named count1s to count the number of 1's in register
$a0 and put the result in register $v0 . For example, if $a0 = 0xffff0000 then the
number of 1's will be $v0 = 16 .

count1s:

li $v0, 0 # initialize $v0 = 0

loop: andi $t0, $a0, 1 # $t1 = bit 0 of $a0

 add $v0, $v0, $t0 # $v0 = count bit in $t0

 srl $a0, $a0, 1

 bne $a0, $zero, loop # loop until ($a0 == 0)

 jr $ra # return to caller

b) (13 pts) Write a function gcd to compute the greatest common divisor of two unsigned

integers as follows:
gcd(a,0) = a

gcd(a,b) = gcd(b,a%b) // a%b is the remainder of di vision

For example: gcd(8,12)=gcd(12,8)=gcd(8,4)=gcd(4,0)=4 .

The arguments are passed in registers $a0 and $a1 and the result is returned in $v0 .

gcd:

bne $a1, $0, else # branch if (b != 0) else

move $v0, $a0 # $v0 = a

jr $ra # return to caller

else: divu $a0, $a1 # divide a by b

 move $a0, $a1 # $a0 = b

 mfhi $a1 # $a1 = remainder a%b

 j gcd # jump to gcd

 Page 8 of 8

 Q6. (20 pts) Translating a Function into MIPS Assembly Language

The function BinarySearch searches an array of integers for a given item. Each
element in the array is a 4-byte signed integer. The procedure receives three parameters:
$a0 = address of the array to be searched, $a1 = number n of elements in the array,
and $a2 = item to be searched for. If item is found then BinarySearch returns the
index of item in register $v0 . Otherwise, $v0 = -1 . Translate this function into
MIPS assembly language and insert comments to explain the use of registers.

 int BinarySearch (int array[], int n, int item) {
 int lower = 0;
 int upper = n-1;
 while (lower <= upper) {
 middle = (lower + upper)/2;
 if (item == array[middle])
 return middle;
 else if (item < array[middle])
 upper = middle–1;
 else
 lower = middle+1;
 }
 return -1;

 }

Solution:

BinarySearch:

 li $t0, 0 # $t0 = lower index

 addiu $t1, $a1, -1 # $t1 = upper index

while:

 bgt $t0, $t1, ret # branch if (lower>upper)

 addu $v0, $t0, $t1 # $v0 = lower+upper

 srl $v0, $v0, 1 # $v0 = middle index = $v0/2

 sll $t2, $v0, 2 # $t2 = middle*4

 addu $t2, $a0, $t2 # $t2 = address array[middle]

 lw $t3, 0($t2) # $t3 = value array[middle]

 bne $a2, $t3, else1 # (item == array[middle])?

 jr $ra # return

else1:

 bgt $a2, $t3, else2 # (item < array[middle])?

 addiu $t1, $v0, -1 # upper = middle-1

 j while

else2:

 addiu $t0, $v0, 1 # lower = middle+1

 j while

ret:

 li $v0, -1 # $v0 = -1

 jr $ra # return

